
THE - Dijkstra; Main point: sequential
processes(central abstraction) in layers;
Why: handle complexity; Benefits: verify
soundness, prove correctness; Layers adv:
modular, abstraction, debug, verify; disadv:
difficult to design(circular dependencies),
separate layers, inefficient (call through
layers); Sync: Semaphores - mutex, waiting
queues (cooperating processes); No circular
wait because uniprocessor system; priority
scheduler; Monitors(Hoare) - only one
process in a monitor procedure at one time;
condV; coarse grained, guaranteed cpu
access to support os; deterministic; if(not
invariant) wait(c)

Nucleus - Per Brinch Hansen; Motivation:
freedom of design not in existing OSes; Main
point: Small nucleus (kernel) supports > 1
simultaneous OS tasks; Msg adv: Easy to
validate, explicit wrt semaphores, simpler;
disadv: buffer management, memory is not
shared, copying overhead, overflow; Layers:
Nucleus (schedule, communicate, proc manip
primitives), user; Sync: msg passing;
Scheduler: Round robin (slow for large
n_children); general and flexible

Protection - Butler Lampson; control
operates on domains, used for revocation;
owner operates on objects

Hydra - Wulf, Cohen; Main point:
capability-based OS nucleus
Goal: construct environments to effectively
utilize HW resources
Separate mechanism (protection) & policy
(security), rejects hierarchy (layers of privilege,
not flexible); Rights types: kernel, auxiliary;
Amplification: trust the procedure implementor;
Capability list: 1 user multiple files; Adv:
fine-grained, flexible right amplification;
Disadv: most entries = no access allowed,
wasting space; expensive search, hard to
revoke, difficult to set up; ACL: single file,
multiple users, easy mgmt; capability and type
matching done for params in procedure

Tenex - Bobrow, Burchfiel; Virtual “machine” =
virtual memory; CLI, terminal interface
Backward compatibility - Old sys call to
compatibility package (Jsys)
Working set principle - which processes to keep
in memory based on inter-fault time (time b/w 2
page faults of a process); not good - apps
should not page in and out; Vm features -
sharing (page appears in addr space of >1 proc
using direct pointers in VM maps), sharing large
portions by CoW; File name fields: device,
directory, name, extension, version; FS -
versioning, 5 level “tree” (symbolic name for file
consists of <= 5 fields, conceptually represents a
tree of max depth 5)

MULTICS - Jerome Saltzer; Right
amplification by rings; Contributed
protection systems, domain transitions,
multilevel security policies; Permission rather
than exclusion (default = not allowed),
access check to each obj, principle of least
privilege; no group access (as opposed to
UNIX); Descriptors, segments, gates, rings -
still used in x86; ACL: easy to set up, slow to
check (walk through the list); ACL + CL:
protection checked at open; FD returned with
capability to R/W; HW holds, checks
descriptors; restrict portability; mmap

Medusa; multi-user distributed centralized OS;
Break into components (disjoint utilities); utility
- distributed among Cm nodes for parallelism
file system invocation is mostly remote; spin
waiting (not good in uniproc, but lock can be
released by other proc in DCS so efficient -
short critical section); pros: easy to maintain,
simple; cons: SPOF, performance, memory
consumption; communication: msg pipes;
unsealing: kernel obj associated w application,
remote access done by first mapping it as XDL
=> unsealed; then manipulate; then reseal
(remove from XDL) - failover; coscheduling

Plan 9; specialized nodes for a particular task,
more cost-effective. Everything is a file; all
servers = file servers. Local namespaces -
relative path names, custom NS for each user,
referencing local names more familiar to
users. Union combines directories from
multiple NSes. 9P - protocol to connect clients
with file servers; implements RPCs for all file
methods. Storage: snapshots, no backups;
new level WORM (slow retrieval, not feasible
today b/c large multimedia files daily). UTF-8,
rfork, /n/dump; Multithreading: rfork (specify
shared, pvt resources, kernel thread)

UNIX; unifying abstraction - file abstraction for
data, I/O. No special HW support - portable
Unified namespace - mount; File - linear
sequence of bytes;fork optimization - CoW;
set-user-id: right amplification (invoke privileged
ops w/o giving privilege to user);
System does buffering (reads, writes) - 2 buffers
- system buffer, library buffer
Shell - forked instead of exec b/c shell proc can
crash if cmd crashes, so safer to let child
execute (process isolation)

Pilot; single user, single address space and
language support; limited features for
protection and resource allocation; no FS,
hints from applications; processes
cooperative not competitive; Mesa and Pilot
interdependent; no protection against
malicious procs, more against errors (lang
based); accepts hints from apps; circularity
between files and VM; kernel/manager
(mechanism/policy); mmap

Mesa; notify places process on run queue, but
does not switch control to it; reason for change
- performance(avoid extra context switches in
Hoare), remove scheduling from inside the
monitor; Deadlock(circular and un-notifiable
wait), priority inversion addressed by temp
priority inheritance; thread.stop - threads check
to see if they should shut down by polling
variable

Sprite; network OS, name and location
transparency, caching network FS; app
interface - extends Unix; single uniform NS,
process migration, shared memory; kernel -
multiprocessor, RPC; (longest) prefix tables;
FS caching - server (reduce delay caused by
disk access), client(reduce no. of calls to non
local disk), read reuse and client write;
sequential - versioning, concurrent - caching
disabled; files as backing store;double caching

Distributed V; msg-based IPC for diskless WS
and large file servers; no significant penalty for
remote access; sync msgs (static, fixed size
kernel buffers), small fixed size msgs (reduce
queuing, buffering), separate data transfer
facility (efficient transfer large data); inefficient:
short msg inefficient use of large packet size,
sync com prevent I/O and computation overlap,
separate data and control increase nw ops;
remote ops: implemented in kernel, raw ethernet
frames, no per-pack ack

Microkernel: IPC, VMem, scheduling;adv
easy to make it reliable and secure, more
stable, extensible, configurable; disadv: lots
of system call and context switch; L4
address space: delegate pager responsibility,
recursive; Linux on L4: runs as user process,
syscalls from process to LServer, LServer
acts as pager for user process; binary
compatibility: shared lib(emulation layer
between LAPI and LServer), trampoline
(syscalls in statically linked unmodified Linux
libraries reflected back to emulation layer);
sp ex evaluation: pipes/RPC, Vm ops, cache
partitioning

FFS; improvement on UNIX FS, larger block
size(4096), more bandwidth utilization, inodes
and data closer(locality); throughput tied to free
space, read as fast as write(In FFS, blocks are
placed on disk in a much better layout, even
with sync reads, placement roughly
corresponds to a good ordering of disk
requests, writes have higher overhead
because they must allocate new blocks) UFS
writes faster(async writes, reorder requests to
minimize seek time); extent-based w/
journaling

LFS; FS designed to exploit HW and workload
trends: large memories, disk BW scaling but
latency is not, smaller file access; FFS
problems: sync writes, possibly related files far
from each other, inodes placed separately
from files; challenges: how to find
data(indirection, inode map in log, pointers to
imap in checkpoint, keep in memory), free
space; adv: cold segments cleaned at much
higher use; disadv: inodes appended to log,
difficult to find, inode location not fixed in LFS
so not as easy as FFS to calculate, manage
free space (GC competes with disk
read/write); crash recovery: checkpoints

Exokernel; main point: customize OS interface /
abstractions - move everything to user level.
Motivation: performance suffers from generality,
can’t customize/extend; Approach: OS layer
exports HW resources directly, OS functionality
at user level in untrusted library OS. FS part of
LOS (no protection, memerr can corrupt on-disk
data structures) - address by SFI; track resource
ownership by tables, protection (secure
bindings) techniques - HW (protected data
sharing via VM HW), software TLB on top of HW
TLB, packet filters for downloaded code; disadv:
no protection within VAS; resource revocation - if
LOS doesn’t cooperate, “abort protocol” forces

Grapevine: distributed message(email) and
registration service; msg service: delivery,
buffering of msgs; reg service: naming,
authentication, access control, resource
location for clients; independent of each
other and use IP to communicate; client user
package: name /address transparency;
client-server- ethernet, server-server - low
B/w modem;scaling issue: distributed lists,
solve by indirection; transparency:distribution
and replication; why not transparent?
Updates are not transactions, duplicate msg
delivery

Xen; high performance VMM supporting strict
resource control among guest OSes, OS that
exposes vHW interface; isolation among VMs,
heterogeneous OSes simultaneously;
paravirtualization - guest OS modified; x86
CPU easy to virtualize because of rings,
memory difficult because HW TLB and no
tagging => V-P-M, insert V-M, write protect PT;
syscalls routed to guest OS via Xen w/o mods,
handled so that no trap to Xen necessary,
exceptions propagated to guest OS by Xen
events, async notifs; guest OS modification
supports event handlers

Rio; write-back performance with
write-through reliability; mem perf (eliminates
synchronous writes) with disk reliability
(protects file cache during normal operation,
restore contents on warm reboot - system
reset, power not lost); protect file cache in
kernel:vm support, read-only file cache;
protection domains separate from address
spaces, separation of file buffer cache into
separate protected module; more reliable than
write-through - faults corrupting file cache
pages caught with protected file cache; fault
injection; checksum, memTest

Soft Updates: order operations so that
metadata is consistent in case of crash; create
file: write inode safely to disk then update
directory block; soft update = enable write-back
caching of metadata; collapse multiple updates
before going to disk; transfer multiple updates to
disk in one write

MACH: maintain all VM state in machine
independent module; large, sparse VAS,
CoW, memory mapped files, user level
pagers and backing store;DS: address map,
mem obj, resident PT, pmap (machine
dependent); easy to share mem regions;
different regions can have diff pagers;
shadow objects: CoW creates a copy only if
extremely necessary (only modified pages)

VAX: OS is essentially just an extension of
user address space of every process, OS can
directly access user code and data, kernel
stacks in user address space; command
interpreter is a part of each user's address
space; optimizations: local page
replacement(FIFO),page caching,clustering;
free list: clean pages evicted from a process
resident set, modified list: dirty pages: second
chance algo

GMS; probability based (imp for DCS),
clusters of computers act like tightly-coupled
microprocessor than LAN, globally shared
local resources; goal: minimize avg data
reference time (go to remote MM instead of
disk); maintain page age, find page in cluster,
make replace and evict decisions

Cells; resource constraints on smartphones,
existing virtualizations require OS mods;
container virtualization (OS namespace) - FS
(own root partition, no files owned by other VPs),
process (only procs running in own NS), NW
(IPs, port mappings), device (/dev); foreground,
background VP, if fg doesn’t acquire exclusive
access, HW shared by bg VPs

Scheduler Activations; vessel to execute
user thread context, mechanism to notify
user of kernel events; stores user thread
state in kernel. Design aspects: upcalls (add
proc, proc preempted, SA
blocked/unblocked), downcalls (hints: add
more procs, proc idle), critical sections (on
preemption/unblock: recovery - run thread till
end of CS; deadlock free); SA not reused to
notify b/c contains exec state of thread;
goals: other ULTs can run during blocking, no
proc idle when ULT ready, no priority inv

Lottery Scheduling; probabilistic mechanism
for proportional CPU share; relative rate;
scheduling; tickets - abstract, relative,
starvation free. Transferable (inheritance via
tickets) - solves priority inversion,
inflation/deflation, currencies(hierarchical
allocation + keep allocation isolated along trust
boundaries), compensation tickets - temp
inflated value; proportional share is goal; can't
express response time differently from share

Taintdroid; android;identify sensitive data,
taint and track data flow (vars - local, args,
static, classes, arrays; msgs - upper bound of
tainted vars in msg; methods; files - same as
msg), real-time monitor behavior of running
apps, identify misuse of pvt data; works even if
data encrypted; significant performance
overhead VM370: Control program(CP)-VMM,
CMS (Conversational Monitor System) -
guestOS; FS - disk; single dir, no hierarchy,
sharing(CP to mount), I/O(record); mem model
single addr space, RSCS(store/fwd nw router)

MapReduce: Reporter: provided for MR to
report progress,indicate that they are alive;
inefficient for multipass algorithms, no efficient
primitives for data sharing; intermediate written
to local disk, output files written to DFS; utilize
data localization by running map tasks on
machines with data, one becomes master and
assigns tasks to idle. Tasks scheduled based on
location of data, map fail - rerun; Workers are
periodically pinged by master, writes periodic
checkpoints, avoid straggler

GFS; Failures are norm, append writes,
co-design apps and FS API, automatic
failure detection, tolerance, recovery,
concurrent appends by multiple clients,
64MB chunk servers: intra-rack BW >
inter-rack BW, garbage collects orphaned
chunks, migrates chunks b/w chunkservers,
file data not cached on chunkserver or client,
append at least once, separate data and
control flow: client interacts directly w
chunkserver, master server state logs stored
on disk, atomic metadata changes by single
master: consistency, client deletes file:
master records deletion in log, renames file
to hidden name, removes every 3 days
Disadv: single master, bad latency,
multiple/small file support weak, relaxed
consistency

BigTable; distributed multi level map, fault
tolerant, persistent, scalable, self managing;
NoSQL benefits: auto sharding(splits a single
dataset into partitions), replication, integrated
caching; tablet - row range, unit of distribution
and loadBal, split as table increases; single
row transactions(atomic read, modify, write
sequence), no support for general transaction
across keys, components - GFS (persistent
data storage, SSTable), Chubby(distributed
lock manager, master election), master(load
balancing, garbage collection), tablet servers,
lib linked to client (read/write directly with tablet
server); 3 level (B+ tree); empty cache - 3RTT,
stale cache - 6 RTT; locality groups
(Segregating columns families that are not
typically accessed together enables more
efficient reads) and compression

HayStack; goals to serve photos: high
throughput, low latency, fault-tolerant,
cost-effective, simple; adv: reduced disk I/O,
simplified metadata, single photo serving and
storage layer; haystack cache uses DHT, add
a photo to cache if request directly from
browser not CDN, photo fetched from
write-enabled store machine; index file allows
quick loading of needle metadata without
traversing larger Haystack store file; cookies
insufficient protection; using column family /
tagging helps for albums

